
How Do You Do What You Do
When You're a z10 CPU?

Bob Rogers
IBM Corporation
rrrogers@us.ibm.com

SHARE in Boston Summer 2010
Session #7534

2

z/OS
zSeries
z/Architecture
IBM®

Trademarks

3

Topics

• Overview of instruction Processing

• What’s different about z10

• Superscalar Grouping

• The Pipeline and its Hazard

• Branch Prediction

• Cache Topology

• Coprocessors

• TLB2 and Large Pages

4

Conceptual View of Execution

• Instructions are executed in the order they are seen.
• Every instruction completes before the following instruction begins.
• Instructions take a varying amount of time.
• Instructions have direct and immediate access to main storage.

instruction instruction instruction instruction

time

But, this is an illusion.

5

Pipeline View of Instructions

• Individual instructions are really a sequence of dependent activities,
varying by instruction:

for example: A R1,D2(X2,B2)

for example: CLC D1(L,B1),D2(B2)

for example: UPT (Update Tree)

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

Operand1
Address

Operand1
Fetch

Operand2
Address

Operand2
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

Execute Instruction as an "internal subroutine" (millicode)

6

Pipeline View of Instructions

• Each stage in the execution of an instruction is implemented by distinct
components so that execution can be overlapped.

time

Instruction

Fetch

Instruction

Decode

Operand

Address

Operand

Fetch
Execute

Putaway

Result

Instruction

Fetch

Instruction

Decode

Operand

Address

Operand

Fetch
Execute

Putaway

Result

Instruction

Fetch

Instruction

Decode

Operand

Address

Operand

Fetch
Execute

Putaway

Result

Instruction

Fetch

Instruction

Decode

Operand

Address

Operand

Fetch
Execute

Putaway

Result

7

Superscalar multiple instruction overlap

• A Superscalar processor can process multiple instructions simultaneously
because it has multiple units for each stage of the pipeline. But, the apparent
order of execution is still maintained.

time

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instructio
n Fetch

Instructio
n Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

8

The IBM System z10 compared to z9

• Z10 has a radically different instruction processor

• high frequency processor
• 4.4 GHz vs 1.7GHz (2.5x)

• much longer instruction pipeline
• 14 stages vs 6 stages

• different type of instruction pipeline
• Rejecting pipeline vs stalling pipeline
• Reject-recylce cost about 9 cycles

• still performs in-order execution

• still favors RX instructions

9

System z10 Instruction Pipeline (partial)

D1 D2 D3 G1 G2 G3I0

I1

I2

I3

I4

B0

B1

B2

B3

B4

RF EX P1 P2 P3

A1 A2 A3A0

Branch redirection
FlushSurprise Branch

Instruction
fetch pipeline

Instruction decode/dispatch

Branch
resolution

Address
Generation

Operand
Formatting

Load forwarding

FX result forwarding

Dispatch Simple
fixed
point

Simple
load

10

Core Pipeline

Instruction Decode
2 Ops/Cycle

Operand access
Compute address
Access TLB and cache
Align and transfer data

Instruction Grouping
Compute stalls
Read Regs for Agen
Issue

Execute (FXU)

Format data
Compute result
Form Condition Code

Putaway
Write registers
Resolve branches
Queue results to
store buffers / RU

Check results

11

Superscalar Grouping Rules

• Most single-cycle instructions are “superscalar”

• Instruction groups contain 1 or 2 superscalar instructions

• First or Last instruction can be a branch instruction

• Instruction groups are held in decode dispatch unit to
avoid pipeline hazards like AGI and OSC

• Some instructions that were superscalar on z9 are not
superscalar in z10

12

High frequency is great, but….

• There are some negative affects cause by the short cycle time. For
example:

• Some instructions can no longer be done in the shorter cycle time and now
take more than one cycle

• Most instructions that involve sign propagation (e.g. LH) are no longer single
cycle

• Requiring both the true and complement value of a register in a group
causes hiccup.

• Keeping the pipeline fed with instructions and data is very challenging

• Memory access seem to take longer when measured in instruction cycles.

• i-cache and d-cache size reduced to retain low latency at high frequency.

• Some pipeline hazards are more costly

• Longer pipeline causes more cycles lost on reject/recycle

• More cases cause reject/recycle rather than stall

13

Pipeline stalls and rejects

• Address Generation Interlock (AGI)

• Waiting for the results of a previous instruction to compute an

operand address

• z10 has AGIs bypass that makes the results of Load Address and
some Load instructions available before Putaway.

• A group is stalled in the decode/issue unit until interlock is
resolvable to avoid pipeline reject later

• Operand Store Compare (OSC)

• Waiting to re-fetch a recently modified operand

• A group is stalled in decode/issue unit based on inspection of i-text
to avoid pipeline reject if OSC is encountered on reject/recycles
part of pipeline

14

Pipeline stalls and rejects

• Instruction Fetch Interlock (IFI)

• reloading instructions as a result of stores into the instruction
stream (actually anywhere in the same cache line)

• causes pipeline reject, clearing decoded instructions and refetching
of instruction cache line (very costly)

• Branch Misprediction

• branching (or not branching) in a way other than the processor has
guessed.

• z10 has complex branch prediction logic

• relative branches have a lower penalty for misprediction

• untaken branches don’t need to be predicted

• “code straightening” is a good idea

15

Inhibition of Superscalar Grouping

• Executing less than the optimal number of instructions
simultaneously due to inter-instruction dependencies

• requiring both the true and complimented value in a group causes a
pipeline reject

• There are a number of bypasses to eliminate dependencies that
prevent grouping

• Load Address AGI bypass

• Load AGI bypass

• Operand Forwarding

16

Branch pattern

Branch Prediction
• The Branch Target Table remembers branches

• BTB is indexed by part of the instruction address [halfword within 4K page]

• Multiple states – taken, strongly taken, not taken, strongly not taken, use PHT

• There is a Branch Pattern recording the last 9 branch directions (0/1)

• A Pattern History Table is indexed by the Branch Pattern

B

B B

B B

B B B

B B

B B

B

B

B B

B B

Program Memory (halfwords)
Red “B”s are taken; Black “B”s are not taken

Branch Target Table
2048 x 5

z/Architecture branch instructions and targets
can be on any halfword

BTB has a row for each halfword in a page

Branch
instruction
address

Branch
target
address

History

state

1015C 1016e T/S

1028C 10310 NT/S

10290 102F2 T/W

……… ………

21032 2104E NT/W

2108C 10028 PHT

P
a
tt

e
rn

 H
is

to
ry

 T
a
b
le

512 entries
2 bits wide

4 states

xxxxxxxxx

9-bits

17

• Multiple history-based prediction

mechanisms

• 2 level Branch Target Buffer

• Filtered Pattern History Table

• Tagged multi-target prediction

• Level 2 BTB data compression

Branch Prediction

T
a
rg

e
t

E
x
te

n
s
io

n
s

2
0
4
8

P
H
T

B

H

T M
R

U
/L

R
U

Level 2

BTB

64KB

I-cache

SBBB

+32

Fetch Logic

I-merge

Branch
Detect

Instr. 1

Instr. 2

Hit Logic

L1

BTB

M

T

B

T

B

G
lo

b
a
l

H
is

to
ry

Reset Addr

SBBB

SBBB

18

z10 Cache Structure

• Private Cache
• L1 Instruction Cache

• 64KB, 4-way set associative

• L1 Data Cache
• 128KB, 8-way set assocative

• L1.5
• 3MB, 12-way set associative

• Inclusive of L1

• Shared Cache
• L2

• 48MB, 24-way set associative

• Inclusive of L1 and L1.5

• Cache line size is 256 bytes

• Compare to z9
• 256KB i-cache

• 256KB d-cache

• No L1.5

• 40MB shared L2

Memory

L2 Cache

L1.5

PU

L1

L1.5

PU

L1

L1.5

PU

L1

Up to 20 PUs sharing an L2

19

Compression and Cryptography
Accelerator

• Accelerator unit shared by 2 cores
• Independent compression engines

• Shared cryptography engines

• Co-operates with core millicode

• Direct path into core store buffers

• Data compression engine
• Static dictionary compression and

expansion

• Dictionary size up to 64KB (8K entries)
• Local 16KB caches for dictionary data

• Up to 8.8 GB/sec expansion

• Up to 240 MB/sec compression

• Cryptography engine
• DES (DEA, TDEA2, TDEA3)

• SHA-1 (160 bit)

• SHA-2 (256, 384, 512 bit)

• AES (128, 192, 256 bit)

• 290-960 MB/sec bulk encryption rate

IB OB IBOBTLB TLB

Cmpr
Exp

Cmpr
Exp

16K

Crypto
Cipher

Crypto
Hash

Core 0 Core 1

16K

2nd Level
Cache

20

CRSTE
PTO or SFAA

SDID/HO – tag-bits

PTE

CRSTE TLB2
128 x 4-way

(512 entries)

PTE TLB2
256 x 3-way x CRSTE-way

(3072 entries)

search argument

for CAM purgeAttribute
CAM

valid-bit tag-bits LPAR guest2_ind

valid-bit tag-bits LPAR guest2_ind

valid-bit tag-bits

LPAR guest2_ind

CRSTE
PTO or SFAA

SDID/HO – tag-bits

PTE

CRSTE
PTO or SFAA

SDID/HO - tag-bits

PTE

CRSTE
PTO or SFAA

SDID/HO – tag-bits

PTE

virt.mach.

(SDID)

0

32

Host (HO) /////// ///////

TLB1 misses on Large Pages that hit in TLB2 can be
resolved without accessing a page table entry

z10 TLB2 and Large Pages

–TLB2 introduced in z990

–TLB2 contains Combined Region and
Segment Table Entries (CRSTEs) and
4K pagetable entries

–TLB1 still contains only 4K entries

–CRSTEs are used to avoid accessing
Region and Segment Tables but Page
Table must still be accessed for 4K
pages to create a TLB1 entry

–CRSTE can be used directly for 1MB
pages to create a TLB1 entry

21

New Instructions on z10

•Compare and Branch type

•To help on condition code limitation

•Compare and Trap

•null pointer checks

•Some new relative instructions

•Load Relative and Store Relative and “execute” relative

•Immediate Instructions

•Move Immediate and compare immediate (16, 32, 64 bits)

•Add Immediate (arithmetic and logical)

•Fill necessary holes in latest architecture

•Some Multiply Immediate, some Multiply long displacement

•Powerful bit manipulation instructions

•Rotate Then (AND, OR, XOR, INSERT) Bits

