
Simultaneous Multi-Threading (SMT)

 on eServer iSeries POWER5™ Processors

Mark Funk
iSeries Systems Performance

May 2004

For the latest updates and for the latest on iSeries performance information, please refer
to the Performance Management Website: http://www.ibm.com/eserver/iseries/perfmgmt.

Simultaneous Multi-Threading on eServer iSeries POWER5
©Copyright 2004 IBM. All rights reserved. Page 1

Table of Contents

18Trademarks .
18Disclaimer - System Performance .
17Conclusion .
15Related Concepts .
13Measured Results .
10Processor Utilization Concepts .

8SMT Operational Modes .
6SMT Observations and Associated Design .
4SMT Overview .
3Introduction .

Simultaneous Multi-Threading on eServer iSeries POWER5
©Copyright 2004 IBM. All rights reserved. Page 2

Introduction

The IBM® POWER4™ processor introduced two processors embedded in a single chip, sharing
a common L2 level cache to increase processing efficiency. The POWER5™ processor builds on
this topology with a significant enhancement called Simultaneous Multithreading (SMT), a
concept where multiple threads of execution can execute on the same processor at the same time.
 IBM introduced a similar concept called Hardware Multithreading (HMT) in its Star line of
processors, but did not include HMT in POWER4; it instead relied on dual processor chips to
meet its performance objectives. Now with POWER5 processors, IBM brings the best of both
worlds together, by keeping multiple processor cores per chip, with all the density-compute
advantages, and going back and significantly building upon the efficiency and hardware cost
“lever” provided by HMT. And, IBM has enhanced the processor to deliver full SMT.

With the Star line's HMT, a processor could support two streams of instructions (two threads,
a.k.a. tasks) by alternating between the two whenever one experienced a long delay. HMT
enabled additional capacity by simply executing one task’s instruction stream while the other task
was experiencing a long delay such as a cache fill. This plays on an ever increasing effect in
processor designs; processor cycle times are speeding up faster than storage access latencies.
Although the HMT processor did manage two tasks, at any given time only one task executed
instructions. In that sense only, HMT can be thought to have two processors per chip. Chip
multiprocessing within POWER4 took a different approach by providing double the amount of
processors on a chip (one thread per processor), double the number of resources completely
available to attack the user’s problem set, each having its own L1 cache, but sharing a common
L2 cache. The POWER5 series improves on the multithreading capabilities of the Star line
within a processor topology similar to POWER4’s, so that each processor can execute two
instruction streams at the same time, without switching between them as the Star processors did.
When operating system’s task dispatcher looks at this chip, it “sees” four available processors,
four places onto which to dispatch a task: two physical processors, then because of
multithreading, two logical processors per physical processor.

In a manner similar to HMT, SMT reintroduces the notion of a single processor that is capable of
executing multiple threads. And as with HMT, simultaneous multithreading alters the notion of
system performance, capacity, and processor utilization. But as you will see, SMT is also
fundamentally different than HMT. It is implemented on the POWER5 processor with quite
different processor pipes, cache sizes, and topologies than the processors upon which HMT is
built. Therefore, SMT needs to be treated as more than just another version of HMT. Indeed,
performance modeling predicts that SMT should enable a roughly 35-40%1 performance
capacity increase over identical processors not using SMT2, a performance improvement value
considerably larger than was measured for HMT.

Simultaneous Multi-Threading on eServer iSeries POWER5
©Copyright 2004 IBM. All rights reserved. Page 3

2 For instance, POWER4 processors do not support SMT but have otherwise relatively similar designs. Further, as
you will see, it is possible to disable SMT on the POWER5 processors.

1 For a database transaction processing benchmark with one-to-16 processors. The capacity increase available to
other environments varies.

It is the intent of this document to present SMT and its performance capabilities, as well as to
introduce a set of topics of which you should be aware.

SMT Overview

As is true with POWER4 processors, the POWER5 processor supports two load/store units, two
arithmetic units, and a branch unit, as well as two floating-point units. Any instruction flowing
through these units takes multiple processor cycles (a.k.a., stages) to complete. In a given cycle,
the processor is used most productively if every stage of each unit executes a different
instruction. This, however, happens very rarely for the typical workload, so a large majority of
the idle stages go unused. This leaves a great deal of the processor’s capacity still available to
improve performance. Many of the stages not used by one thread can be utilized by concurrently
executing the instruction stream of another thread (i.e., another entire control flow). This is the
basic notion behind SMT; the underutilized processing capacity resulting from the unused
processor stages can be used by another thread. Rather than consecutively executing portions of
each thread’s instruction stream, SMT enables concurrent execution of multiple instruction
streams.

In POWER5’s SMT, each physical processor can simultaneously support two threads. Each of
these two threads is said to execute on a “logical processor”, two logical processors per physical
processor. The instruction stream for both threads are accessed from the same L1 instruction
cache and issued, jointly, to the processor’s units (i.e., the processor’s pipes). Of course, there is
conceptually, and in some cases, physically a separate register space for each thread.

Ideally, the instruction stream of both threads is being read from the instruction cache, flowing
through the pipe line stages, and using the physical processor’s resources without contention
between the threads. When this happens, SMT can theoretically double processing throughput.
Clearly though, a given stage in a particular unit can be used by only one thread per cycle; other
processing resources also exist that get momentarily consumed by each thread. So if both threads
have instructions contending for the same pipe stage or resource, an instruction for one of the
threads must wait. Given that both threads never vie for common processor resources (such as
pipe stages), you can see that it is possible, though not likely, for both threads to execute as
quickly as one.

To understand this better, let's take a look at how instructions are issued and dispatched. Multiple
instructions of either thread can be issued into the set of pipes in any one cycle. Any five
instructions representing up to two load/store, two binary arithmetic, two floating-point
arithmetic, and a branch can be issued per cycle, often from both threads in the same cycle. Only
one instruction from either thread can be issued into a given pipe per cycle. Once issued,
instructions proceed through the pipe stages in this order. The physical processor determines the
issue order of instructions based on a number of rules which take into account (1) operand
dependencies, (2) how long instructions have been waiting to be issued, and (3) to allow
instructions to execute out of order where appropriate. Think of it as a funnel; the funnel is filled
by dispatching instructions from the instruction cache at a rate of multiple instructions per cycle
and emptied by issuing instructions into the set of pipes at a rate which is optimal for these pipes
Simultaneous Multi-Threading on eServer iSeries POWER5
©Copyright 2004 IBM. All rights reserved. Page 4

while meeting the functional requirements of each thread's instruction stream. Instructions are
dispatched into this funnel at a rate of up to five instructions per cycle; a given dispatch cycle
only contains the instructions of one thread. All of this takes place within one physical processor.

Each physical processor contains an L1 data cache and an L1 instruction cache, so they are
shared by both logical processors. A much larger L2 cache is common to POWER4’s two
physical processors and POWER5’s four logical processors. So with SMT, four threads share the
same L2 cache. Multiple cache fills that are incurred by multiple threads - on both logical and
physical processors - can be concurrently processed.

With HMT, instructions could still execute during a a long processor delay (e.g., cache fills from
main storage), but there is an explicit processor-initiated thread switch on such long processor
delays. Of course, cache misses and such (relatively longer) long delays in instruction execution
also occur on POWER5 processors, and again one thread’s instruction stream can continue
executing while one or more cache fills for the other proceeds. The thread incurring the delay
requires less use of the processor pipes during that delay; the result being that the remaining
thread can then use nearly every stage of the processor pipes until it, too, incurs a long delay or
the long delay incurred by the first thread is complete.

Simultaneous Multi-Threading on eServer iSeries POWER5
©Copyright 2004 IBM. All rights reserved. Page 5

SMT Observations and Associated Design

As you can see, SMT has some tradeoffs from a performance point of view. Overall two threads
can concurrently execute on the same processor, so one need not wait as long for an available
processor. However, the contention for common resources, such as pipeline stages, would tend
to slow an individual thread’s execution speed. If pipeline stages and other processor resources
are available when needed by each thread, the two threads can execute as efficiently as one; the
two threads could take no more time than one. When there is contention, a thread’s execution is
slowed. But, although SMT may slow an individual thread, the capability of executing multiple
threads at the same time can significantly increase the system’s throughput, i.e., its capacity to
take on more work. The usage of the processor cache’s is also changed by SMT and this too
affects performance gains.

! With SMT, two threads now share the 64-kilobyte L1 Instruction-cache and 32-kilobyte L1
Data-cache found in each physical processor. L1 cache sizes are the same as on POWER4
processors. Given that there is only one thread running on this physical processor, all this
cache is available to this one thread. When running two threads, each thread’s state must
reside in this shared cache, effectively decreasing the size of the cache seen by a given thread
and possibly slowing processing. Inter-thread cache thrashing is also possible. But there is
also the potential for inter-thread sharing of the same data or instruction stream held in L1
cache lines, giving a relative performance boost with SMT. The amount of this sharing —and
conversely, the contention for cache resources— directly affects the additional capacity
implied by SMT’s logical processors. But the capability to execute one thread’s instructions
while the other thread’s cache fills are “in process” acts to offset some of the effects of cache
contention.

! With SMT, four threads now share the 1.9-megabyte L2 cache—an increase from POWER4
processor’s 1.4 megabytes. As with the L1 caches, there is sharing between these threads and
some contention for cache lines. Relating to the sharing, think of it like this; with POWER5’s
SMT, four threads can be concurrently changing data held in their common L2 cache.
Without SMT (say on POWER4 processors) these four threads are executing on, at best, two
different chips with different L2 caches. Changes made to this shared data results in a delay
to move the data between each chip’s L2 cache. But with SMT, no data movement between
L2s is required since the state of all four threads’ data is held within this one L2 cache.
Conversely, where there is no sharing between the threads, the cache space being used by
four threads with SMT is effectively smaller than the cache used by two threads not running
SMT.

Clearly, SMT provides a potentially significant opportunity for more performance capacity.
Where there is no contention for shared processor resources, each logical processor can execute
as well as if it were a separate physical processor. But there is also an opportunity for unfortunate
performance effects. This is dependent upon: (1) the type of workload, (2) the level of cache
sharing between the threads that are simultaneously multithreaded, and (3) the coding style
producing the instructions to be executed concurrently. Even within a database transaction-based
workload, where the average benefit is modeled to be in the 30-40% range, both the ideal and

Simultaneous Multi-Threading on eServer iSeries POWER5
©Copyright 2004 IBM. All rights reserved. Page 6

“not-so-ideal” effects of SMT will be experienced. Largely due to cost and chip size issues,
sharing of a physical processor’s pipes and pipe stages is an efficient way to increase the
performance capacity of a system. But as you can and will see, the measured gain that results
from its use is also dependent on the environment. Due to SMT alone, some environments will
experience more capacity, others less.

As you can easily see, SMT does not speed the execution of any given task. You will realize no
benefit due to SMT alone, and in reality, you may see less performance for a single-threaded
application. SMT improves throughput in much the same way as do additional processors, by
allowing more tasks to execute at the same time. When every logical processor is used, the
amount of performance improvement provided by SMT is seen either because a greater
percentage of the work is done in the same amount of time, or all the work is completed in less
time. Response time, though, can also be thought to improve since a “logical” processor is more
likely to be available when needed - lessened processor queuing effects - either because of the
additional “logical” processors or because work other than your own task got done more quickly.

Please realize that SMT is not SMP (Symmetric Multiprocessing). Although both SMP and
SMT scale through concurrent execution of multiple threads, they scale system capacity for quite
different reasons. In SMP environments, not every processor is used all the time. At some level,
SMT may appear to simply double the number of processors. But as you’ve seen, a thread which
runs alone on a physical processor typically runs faster than one sharing a physical processor with
another thread. For that reason, at lower utilization, the operating system, specifically the Task
Dispatcher, tends to allocate only one thread per physical processor. As system utilization
increases - as the number of dispatchable threads exceeds the number of physical processors -
both logical processors get used.

When any processor, including an SMT’s logical processor, is not doing real work, that processor
is nonetheless executing instructions on behalf of a “Wait State task3.” Often, system utilization
is such that only one of the two SMT logical processors will happen to execute a work task4; the
other logical processor executes the instruction stream of the Wait State task, instructions that are
repeatedly executed while that logical processor polls for useful work. The instruction stream of
the Wait State task contends for physical processor resources just as would two work tasks,
effectively slightly slowing the processing of the work task on the same physical processor. For
this reason, the SMT hardware also supports the notion of “priority.” Instructions from the lower
priority Wait State task are dispatched at a slower rate. This means that the work task gets a
large majority of the available dispatch cycles and therefore use of most of the processor
resources. This clearly helps the performance of the work task. But it also has an effect on
measured CPU utilization, a subject which will be discussed shortly.

Simultaneous Multi-Threading on eServer iSeries POWER5
©Copyright 2004 IBM. All rights reserved. Page 7

4 A “work task” is essentially just the active part of an application or program.

3 The Wait State task typically executes nothing more than a small amount of code which continually asks the
question “Do you have anything for this logical processor to do?”

SMT Operational Modes

Three SMT modes of operation are offered via the system value QPRCMLTTSK5, the same one
used to control HMT:

! *OFF ... As the name implies, no processor controlled by this operational mode will use
SMT. The hardware will be set to Single-Thread (ST) Mode with the result being that only
one thread is ever dispatched to a physical processor and the full resources of that processor
can be used by that thread. It is as though the capabilities of SMT discussed earlier do not
exist. When *OFF is set, it affects every processor used by that partition.

! *ON ... The task dispatcher can dispatch up to two threads onto a single physical processor.
However, dispatching a task to a completely unused physical processor is typically better for
performance than dispatching a task to a physical processor that is already executing one
thread. A wait state task will execute on any unused logical processor, and will run at a lower
priority than a work task. When *ON is set, it affects every processor used by that partition.

! “System Controlled”... This mode offers an additional capability over that of *ON. It offers
the opportunity for the operating system to temporarily mark a physical processor as being in
single-thread mode when there is only one work task on a physical processor. The intent is to
allow single tasks to execute slightly faster when the operating system suspects that both
logical processors will not be needed. If a physical processor is in this single-threaded mode
when a second task needs to be dispatched here, the physical processor is returned to SMT
mode. The measurement of CPU utilization might produce less predictable results in this
mode than with the others. This value is the default.

Unlike HMT, POWER5’s SMT mode is associated with an operating system, not with the
Central Electronic Complex (CEC) proper. Where logical partitioning (LPAR) enables multiple
operating systems, each partition can set its mode differently. Indeed, where shared processors
are used, the processor’s mode changes to that of the current partition. It is a physical processor -
a pair of logical processors together - which are switched between operating system partitions.

The POWER5 hardware proper supports a mode - single threaded (ST) - where all of the
resources of the processor (all cycles, all registers) can be thought of as being assigned to only
one of the logical processors and, therefore, to one thread. In this mode, only one thread executes
on the physical processor. Because of the lack of contention for hardware resources, a work task
executing in ST mode has the opportunity to execute slightly faster than in SMT mode. Response
time for a particular work task in ST mode is typically better even if, when in SMT mode, it is
only ever sharing the processor with a Wait State task. SMT adds to system capacity, not single
task performance. So, as noted earlier, a physical processor’s ST mode can be used, either when
it is explicitly required by the QPRCMLTTSK system value (*OFF), or when this system
variable indicates that the system can decide. The hardware’s ST mode is never used when
QPRCMLTTSK = *ON. When the system decides to switch the physical processor to ST mode,

Simultaneous Multi-Threading on eServer iSeries POWER5
©Copyright 2004 IBM. All rights reserved. Page 8

5 At this writing, changes to the QPRCMLLTTSK system variable require a partition IPL to take affect.

it is because the utilization of the processor(s) is low enough SMT mode for that processor will
not soon be required. The decision to automatically switch to ST mode is complicated by
processor utilization measurement issues. The usage of ST mode also impacts the measurements
of processor utilization and capacity. This concept will also be discussed as part of a later
section, after we cover issues relating to measuring CPU utilization.

Simultaneous Multi-Threading on eServer iSeries POWER5
©Copyright 2004 IBM. All rights reserved. Page 9

Processor Utilization Concepts

The advantages of SMT, as compared to ST on the same hardware, are environment-dependent.
Determining the benefit is fairly straightforward when every processor (and logical processor) is
utilized 100% of the time. As mentioned earlier, the benefit can be estimated by noting that x%
more work is being done in a fixed period of time, or that a set amount of work represented by
multiple tasks is being completed in y% less time. There is no way to determine the increase in
capacity due to SMT alone except through experimentation or direct comparisons to previously
published results6.

Often, though, average CPU utilization is commonly used to determine the amount of
performance capacity7 still remaining in a server, as in:

Capacity Remaining % = 100 % - Current Percent CPU Utilization

Prior to SMT, the notion of CPU utilization could essentially be represented by way of the
percentage of a period of time that a processor is not in its wait state. Or said differently:

Capacity Remaining % = Percent CPU Utilization of Wait State Task(s)

From an SMT point of view, CPU utilization of a physical processor could be interpreted as the
time that both logical processors are not in their wait state. If either of the two logical processors
is executing a work task, the entire physical processor would be viewed as being utilized. By this
definition, if exactly one logical processor always executes one work task, then CPU utilization
would be presented as 100%. Clearly though, when there is only one work task, there is also one
Wait State task. So the utilization should be something less than 100%; the executing Wait State
task implies that available capacity exists. There should be a way of noting the remaining
capacity perceived by the Wait State task. Ideally, given the Wait State task was replaced with a
work task, there is a need to know the available percentage of processor cycles that it could
consume. You can see that this technique would overstate CPU utilization.

Alternatively, each logical processor could be viewed as just another SMP processor. The
amount of time that any work task is executing on a logical processor divided by the total
measurement period is just the definition of normal SMP processor utilization, quite independent
of SMT. If the system only had one physical processor (two logical processors) this would read:

CPU utilization = ((RunCycles0 + RunCycles1)/2) / Cycles_In_Measurement_Period

This equation implies that if only one or the other logical processor was ever used (but not both),
utilization would be 50%. This would further imply that the remaining capacity is also 50% or

Simultaneous Multi-Threading on eServer iSeries POWER5
©Copyright 2004 IBM. All rights reserved. Page 10

7 In this document, we use the term “capacity” to refer to the server’s capability to accept additional work.; Whereas,
“capacity” more usually means the total amount of work the server is able to accomplish..

6 Indeed, even at 100% utilization - meaning that every logical processor is being used all of the time - there might
actually be slightly more capacity available. As with practically any thing else in a computer system, this additional
capacity becomes available through the efficient parallel usage of the many available processing resources.

that the system was still capable of doing twice as much work, an unlikely situation for
simultaneously multithreaded logical processors. So this alternative for measuring CPU
utilization overstates available capacity (and understating CPU utilization).

Instead, in an attempt to avoid both under and overstating the available capacity, the POWER5
processor adds a register called PURR (Processor Utilization of Resource Register) to each
logical processor. The processor hardware assigns each and every dispatch cycle within a
physical processor to one, or the other, logical processor, doing this by incrementing one or the
other logical processor’s PURR per cycle. A logical processor’s PURR is incremented by one
for each cycle in which instructions are dispatched on behalf of its thread. When there are
unused dispatch cycles, hardware decides to which thread the cycle should be assigned,
incrementing that PURR. This works relatively well when both threads are work tasks; their sum
still represents total actual work. When one of the logical processors is executing a Wait State
task, cycles are assigned to its PURR like any other task8. And it is the counts assigned to either
of the two Wait State task’s PURR that ultimately represent the remaining processing capacity
of a physical processor.

For each logical processor, the CPU utilization of that logical processor is the time not spent in
its Wait State task. The CPU utilization of a single processor over a time period M then is

((M - (Wait_State_PURR1 + Wait_State_PURR2)) / M) * 100 %

 where Wait_State_PURRx is the time the logical processor spent in its Wait State task during
the time period M. Since only one, or the other, PURR is incremented in any given cycle, if both
logical processors are only executing in their wait state, then

M = Wait_State_PURR1 + Wait_State_PURR2

So, as you would expect, remaining capacity is 100% and CPU utilization is 0%.

Total system utilization in a multiprocessor system then, when using dedicated processors9, is
essentially the average utilization of all the processors using the above definition of CPU
utilization. CPU utilization represents any usage of a processor other than the Wait State task,
even if the processor is only waiting (filling the cache from main store for instance); even a
utilization of 100% does not necessarily mean that the processor is executing instructions.
Interestingly, with SMT, the Wait State task’s PURR absorbs cycles spent waiting on a work
task’s cache miss - representing these delay cycles now as capacity cycles - which would have
been otherwise assigned to a work task as CPU utilization cycles. Said differently, through the
use of the Wait State PURR, the long delay periods experienced by a work task are now counted

Simultaneous Multi-Threading on eServer iSeries POWER5
©Copyright 2004 IBM. All rights reserved. Page 11

9 When using shared processors, the measurement period “M” represents only that time during which an operating
system is bound to a set of processors. We should also note that CPU utilization is a concept measured within an
operating system; it does not necessarily span an entire CEC. It only counts the utilization of the processors owned
by that operating system.

8 To keep track of CPU utilization on a task-by-task basis, the PURR cycle counts assigned to each task are
maintained within each task—as the task is switched out. This is also true for the Wait State tasks, the sum of their
PURR ultimately representing the available capacity.

as available processor capacity. This seems an intuitively correct approach since a second work
task could be executing instructions during such a delay (in a manner conceptually similar to
HMT).

This form of calculating CPU utilization, even on a job by job basis, is what is used in support of
the commands WRKACTJOB and WRKSYSSTS. And clearly, any other scheme is unable to
“fairly” assign cycles amongst threads when work tasks are running on both logical processors.

Although better than the alternatives, the PURR-based means of calculating CPU utilization is
not absolutely precise either. On a thread-by-thread basis when running two work tasks, this
mechanism is attempting to make a estimate of how each thread utilized physical processor
resources. From a system wide point of view, for a particular physical processor, measured
utilization is clearly absolutely precise when that processor is executing no work tasks; CPU
utilization on that physical processor is 0%. Similarly, when both logical processors of a physical
processor are both being used, utilization is just as clearly 100%. And these states are relatively
common. It is when there is one work task and one Wait State task executing on a physical
processor that absolute precision is not possible. Recall that it is the cycles assigned to the Wait
State task’s PURR that represents available capacity. But it is capacity as perceived by the “gold
standard” of the Wait State task. But when a second work task replaces the Wait State task, will
it be consuming the same number of cycles perceived as having been consumed by the Wait State
task? For this is what “available capacity” effectively means. If a high degree of precision were
expected, the answer to the question is really no. Available capacity and therefore measured
CPU utilization is a measure of how the Wait State task interacts with a single work task on a
physical processor and so is also a function of the characteristics of the work task. Since those
characteristics change from moment to moment, momentary CPU utilization of that physical
processor will as well. So once again, measured CPU utilization whenever running one work
task on a physical processor is a function of the characteristics of the work task. But in a typical
environment, anywhere from zero work tasks to more than the number of logical processors can
be contending for processors at any moment in time, and this has an averaging effect on any
“imprecision” occurring in other states. And, again, even though this is being described as
imprecise, it is considerably better than the alternatives.

The discussion of the PURR, of course, relates primarily to SMT mode (*ON). When running in
single-thread (SMT *OFF) utilization is calculated exactly like any other SMP; the physical
processor either is or is not being utilized. Within a measurement period, the sum over all
physical processors of the time that each physical processor was used is the CPU utilization.

Simultaneous Multi-Threading on eServer iSeries POWER5
©Copyright 2004 IBM. All rights reserved. Page 12

Measured Results

You’ve suffered through all of this theory. Let’s take a look a some simple but actual results.

The purpose of the chart shown below is to study the capacity of a single POWER5 processor
chip that consists of two physical processors by executing a set of primitive operations which
focus on particular aspects of the dual-processor’s design. Of course, in SMT mode, this means
that there are four logical processors. The same stressful operation was executed by every thread,
two threads with SMT’s *OFF and four threads with SMT’s *ON. For instance, one of the tests
(see Heavy Pipe) had an instruction stream which attempted to use every pipe stage in every
cycle. Others (e.g., Memset, Memcpy) attempted to maximize the number of stores. A few more
studied the effects of more lightly used pipes, using branch misprediction and operand
dependencies (e.g. Load/ALU/Store) to achieve this. Not unexpectedly, where a resource was
heavily utilized in ST mode, SMT mode attempted to drive the resource even harder, so SMT
mode offered limited additional capacity (over ST mode). But where resources such as pipe
stages were available, SMT achieved between 45-65% more throughtput in these simple
examples. We have also found that when two differing environments are concurrently running on
the same physical processor (say cache misses with heavy pipe usage) you can often expect

superior gains.
.

But these are primitives, operations that you can easily test yourself. More important are the
actual workloads, most which ultimately consist of short-lived transitions through operations
similar to these primitives. Lacking in these primitives, though, are the cache misses and their
resulting long delays seen in actual workloads. As with HMT, much of the capacity advantage of
SMT over ST also comes from this effect.

Simultaneous Multi-Threading on eServer iSeries POWER5
©Copyright 2004 IBM. All rights reserved. Page 13

H
ea

vy
 P

ip
e

B
r M

is
pr

ed
ic

t 1

B
r M

is
pr

ed
ic

t 2

Lo
ad

/A
LU

/S
to

re

M
em

se
t S

to
re

M
em

cp
y

C
al

l

In
de

xe
d

Li
st

Po
in

te
r L

is
t

SMT Mode 4 Threads
ST Mode 2 Threads

In larger environments, we are seeing that SMT produces ~35% in database transaction
processing and Websphere workloads, ~28% in SAP, and ~ 45% in Domino R6 Mail.

Simultaneous Multi-Threading on eServer iSeries POWER5
©Copyright 2004 IBM. All rights reserved. Page 14

Related Concepts

Memory Affinity

SMT also has some overlap with the concept of Memory Affinity. In 8-processor nodes (MCMs),
SMT effectively creates 16 “local” processors, all sharing the same local cache(s) and main
storage. The existence of these extra local processors would tend to increase the probability that a
task can execute within its home node. But as we’ve seen, the performance of 16 threads
executing on 16 logical processors is not twice that of 8 tasks executing on 8 physical processors.
So suppose that a task becomes dispatchable when two processors happen to be available, one, a
single logical processor on this task’s home node, and the other, a full physical processor (i.e., no
task executing on either of its logical processors) on a remote node. Is it better for the task
dispatcher to use the partial processor on the home node, or to use the complete processor on the
remote node, especially realizing that the other logical processor of the remote processor might
shortly become used? There is a tradeoff between the additional capacity available on the single
logical processor and the repeated latency of loading the state of this task into a remote node (and
of restoring it to the home node later). For this reason, the task dispatcher tends to first use local
logical processors before using remote processors.

CPU Utilization within SMT’s System Controlled Mode

The SMT mode of *SystemControlled adds another twist into the precision of CPU utilization.
In this mode, the system has the option of temporarily switching a physical processor to support a
single task if the system perceives a performance benefit for that task is possible. The system
returns the physical processor to SMT mode when a second work task is to be dispatched there.
Clearly, there is no concurrently executing Wait State task when there can be only one task
executing on a physical processor. So for the period where the physical processor is only
executing the one work task, the utilization of that physical processor is measured as being
100%. If SMT *ON mode were used, that same work task would be executing along with a Wait
State task, this Wait State task would perceive available cycles, so the measured CPU utilization
would be well less than 100%. So switching the physical processor to execute the single task
alone both improved its performance AND increased the measured CPU utilization.

In order to further exemplify this point, consider a 2-way system in SMT mode executing four
work tasks on the four logical processors. By definition, CPU utilization for this system is 100%.
Next, suppose that one work task no longer needs the processor, leaving three tasks to continue.
If in *SystemControlled mode, the system has the option of replacing the lost work task with a
Wait State task or of switching, perhaps after a while, that physical processor to run just the one
remaining work task. If the system switches to execute only one task on that one physical
processor, leaving the other physical processor in SMT mode and executing two tasks, CPU
utilization still remains at 100%. Only three tasks are now executing, one now executing slightly
faster, but utilization remained unchanged. If instead, the system had switched in a Wait State
task, CPU utilization would be measured as being less than 100%. As a next step, let’s remove a
work task from the other physical processor, leaving one work task on each physical processor.
Without a Wait State task on either physical processor, CPU utilization would be measured as

Simultaneous Multi-Threading on eServer iSeries POWER5
©Copyright 2004 IBM. All rights reserved. Page 15

still being 100%. Notice that if these remaining two tasks had instead been running on the same
physical processor, the other physical processor running the Wait State task, CPU utilization
would be measured as being 50%.

This effect may seem odd. But this example tends to be atypical in the long term. More likely is
an environment where many tasks use a processor, each for a short period of time. So on this
same 2-way system, 50% utilization is a mix of periods when there is no processor being used,
and also when 1, 2, 3, or 4 logical processors are being used. As we’ve discussed earlier, the
utilization measured when there is no processor usage and 4 logical processors being used is
absolutely precise. It is less precise for cases of 1 and 3 processors being used, but throughput is
up as well. If you were to graph this effect (i.e. CPU utilization vs. Transaction counts), there are
cases where the increase in measured CPU utilization is proportional to the increase in
transaction counts. There are also cases where CPU utilization will be measured as being
proportionally greater than the increased transaction counts, the result being a nonlinear drop-off
in the curve.

Lastly, at this writing, there is no difference in the implementation of SMT’s *ON mode and that
of SystemControlled. The task dispatcher does not yet switch physical processors to
single-threaded mode. The design of how to handle SystemControlled is not yet mature enough
to minimize these effects to a level that is considered acceptable.

An HMT Overview

HMT exploited the concept that modern processors are often quite fast relative to certain
memory accesses. Without HMT, a modern CPU might spend a lot of time stalled on things like
cache misses. In modern machines, the memory can be a considerable distance from the CPU,
which translates to more cycles per fetch when a cache miss occurs. The CPU idles during such
accesses. Since many applications feature database activity, cache misses often figured
noticeably in the execution profile. So as with SMT, the question becomes “Can we keep the
CPU busy with something else during these misses?”

HMT created two securely segregated streams of execution on one physical CPU, both controlled
by hardware. It was created by replicating key registers including another instruction counter.
Generally, there is a distinction between the one physical processor and its two logical
processors. However, for HMT, the customer seldom sees any of this as the various performance
facilities of the system continue to report on a physical CPU basis.

Unlike SMT, HMT allows only one instruction stream to execute at a time. But, if one
instruction stream took a cache miss, the hardware switches to the other instruction stream
(hence, "hardware multithreading" or, some say, "hardware multitasking"). There would, of
course, be times when both were waiting on cache misses, or, conversely, applications that hardly
ever had misses.

Simultaneous Multi-Threading on eServer iSeries POWER5
©Copyright 2004 IBM. All rights reserved. Page 16

Generally, in most commercial workloads, HMT enabled gives gains in throughput between 10
and 25 percent, often without impact to response time.

In rare cases, HMT results in losses rather than gains. Although the system value
QPRCMLTTSK also controls SMT, it was originally introduced in order to turn HMT on or off.
This could only take affect when the whole system - not just a partition - was IPLed and
controlled all partitions.

Not all prior models have HMT. In fact, some recent models have neither HMT nor SMT. The
following models have HMT available: 270, 800, 810, 820, 830, 840. The following have
neither SMT nor HMT: 825, 870, 890. Earlier models than the 270 or 820 series (e.g. 170, 7xx,
etc.) did not have either HMT nor SMT.

Conclusion

Simultaneous Multithreading delivered by IBM in POWER5 processors is an example of
innovation that matters. Extensive microprocessor architecture research, development and
testing has resulted in workloads running on POWER5-based IBM eServer iSeries platforms
potentially experiencing a 35-40% performance capacity increase. Results gained depend on
specific workloads, and on use of the default mode of "System Control," or changing to *OFF or
*ON if benchmarking as testing so indicates.

Simultaneous Multi-Threading on eServer iSeries POWER5
©Copyright 2004 IBM. All rights reserved. Page 17

Disclaimer - System Performance

Performance is based on measurements and projections using standard IBM benchmarks in a
controlled environment. The actual throughput or performance that any user will experience will
vary depending upon considerations such as the amount of multiprogramming in the user's job
stream, the I/O configuration, the storage configuration, and the workload processed. Therefore,
no assurance can be given that an individual user will achieve throughput or performance
improvements equivalent to the ratios stated here.

Information is provided "AS IS" without warranty of any kind. Mention or reference to non-IBM
products is for informational purposes only and does not constitute an endorsement of such
products by IBM.

The material included in this presentation regarding third parties is based on information
obtained from such parties. No effort has been made to independently verify the accuracy of the
information. This presentation does not constitute an expressed or implied recommendation or
endorsement by IBM of any third party product or service.

The information in this presentation is based on publicly available information about Microsoft
and the Windows 2000 products, Compaq products, and Sun products. The information
contained in this presentation is believed to be accurate by the author on the date it was
published. However IBM does not warrant or guarantee the accuracy of the information.

The information presented regarding unannounced IBM products is a good faith effort to discuss
iSeries plans and directions. IBM does not guarantee that these products will be announced.

Trademarks

© Copyright International Business Machines Corporation 2004. All rights reserved.
References in this document to IBM products or services do not imply that IBM intends to make
them available in every country.
The following terms are trademarks or registered trademarks of the IBM Corporation in the
United States or other countries or both:

PowerPC ASIPDSBrioQuery
PowerPCIntelligent Printer Data StreamAT
OS/400Integrated Language EnvironmentAS/400e

Operating
System/400

Information WarehouseAS/400
OS/2IBM Network StationAPPN
OfficeVisionIBM LogoApplication Development

WebSphereNetViewIBMAnyNet
SystemViewNetfinitye-business logoAIX
SmoothStartNet.DataDB2 Universal DatabaseAFP
SanFranciscoNet.CommerceDataGuideAdvanced Function Printing
PSFJustMailClient SeriesADSTAR

Simultaneous Multi-Threading on eServer iSeries POWER5
©Copyright 2004 IBM. All rights reserved. Page 18

Print Service FacilityiSeriesBRMS

Photographs shown are of engineering prototypes. Changes may be incorporated in production
models.

All customer examples described are presented as illustrations of how those customers have used
IBM products and the results they may have achieved. Actual environmental costs and
performance characteristics may vary by customer.

Information in this presentation concerning non-IBM products was obtained from a supplier of
these products, published announcement material, or other publicly available sources. Sources
for non-IBM list prices and performance numbers are taken from publicly available information.
Including vendor announcements, vendor worldwide homepages. IBM has not tested these
products and cannot confirm the accuracy of performance, capability, or any other claims related
to non-IBM products. Questions on the capability of non-IBM products should be addressed to
the supplier of those products.

All statements regarding IBM future direction and intent are subject to change or withdraw
without notice, and represent goals and objectives only. Contact your local IBM office or IBM
authorized reseller for the full text of the specific Statement of Direction.

Simultaneous Multi-Threading on eServer iSeries POWER5
©Copyright 2004 IBM. All rights reserved. Page 19

	Simultaneous Multi-Threading on System i5
	Table of Contents
	Introduction
	SMT Overview
	SMT Observations and Associated Design
	SMT Operational Modes
	Processor Utilization Concepts
	Measured Results
	Related Concepts
	Conclusion
	Disclaimer - System Performance
	Trademarks

