
. ,

GG22-9220-00
December 1980

The J ES2 Checkpoint Mechanism

Written by:

Published by:

P. A. Eden
DSD P'::><'ghkeepsie

J. M. Hutchinson
Washington Systems Center

(

. "

(

Washington Systems Center
Gaithersburg, Maryland

Technical Bulletin

The JES2 Checkpoint Mechanism

P.A. Eden, DSD, Poughkeepsie
Published by J.M. Hutchinson

GG22-9220 - 00
December 1980

kyne
Rectangle

This Technical Bulletin is being made available to IBM and
personnel. It has not been subject to any formal review and may
total solution. The exact organization and implementation
functions described will vary from installation to installation
be individually evaluated for applicability.

customer
not be a
of the

and must

It is possible that this material may contain reference to, or information
about, IBM products (machines and programs), programming, or services
that are not announced in your country. Such references or information
must not be construed to mean that IBM intends to announce such IBM
products, programming, or services in your country.

Publications are not stocked at the address given below; requests for IBM
publications should be made to your IBM representative or to the IBM
branch office serving your locality.

A form for reader's comments is provided at the back of this publication.
If the form has been removed, comments may be addressed to: IBM Washington
System Center, 18100 Frederick Pike, Gaithersburg, MD 20760.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever. You may,
of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1980

ABSTRACT

This document is a result of a presentation made by Phyllis Eden at a
GUIDE user group meeting in November, 1979. It is being made available in
this Washington Systems Center Bulletin for wider distribution to IBM rep­
resentatives and customers.

Abstract iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv The JES2 Checkpoint Mechanism

..

The Function of the JES2 Checkpoint
JES2 Checkpoint DASD
JES2 Checkpoint Data Set and Control
The JES2 Checkpoint Cycle
JES2 Checkpoint I/O Operations

History of the Checkpoint Function
JES2 Checkpoint Integrity

Checkpoint Integrity Philosophy
The Alternate Checkpoint Data Set
Checkpoint Data Set Format
Checkpoint Data Set Lock
Extraordinary Error Detection and Recovery
JES2 Initialization Checkpoint Data Area Analysis
Diagnostic and Operational Considerations

CONTENTS

1
1
2
3
4
6
7
8
8

10
13
15
17
18

Contents v

THIS PAGE INTENTIONALLY LEFT BLANK

vi The JES2 Checkpoint Mechanism

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

1. JES2 Checkpoint Read Operation
2. JES2 Checkpoint Write Operation
3. Alternate Checkpoint Data Set
4. Checkpoint Data Set Format
5. Track 1 - Check and Lock Records
6. Track 1 - Master Record
7. Initial Read Channel Program
8 . I/O Completion Verification

LIST OF ILLUSTRATIONS

5
6
9

9. Checkpoint Data Integrity Verification

11
12
13
14
16
17

List of Illustrations vii

THIS PAGE INTENTIONALLY LEFT BLANK

viii The JES2 Checkpoint Mechanism

THE FUNCTION OF THE JES2 CHECKPOINT

Originally, in HASP and in early versions of JESZ, the sole purpose of the
checkpoint was to maintain a copy of the work queues on DASD so that the
system could be restarted. Periodically, the storage copy of the job and
output queues were written to the DASD, hence the name 'checkpoint'. When
the system was restarted after a failure or normal shutdown, HASP could
read the checkpoint from the spool and continue processing as if it had
never been interrupted.

When JES2 Multi-Access Spool was developed to allow loose coupling of
processors, the checkpoint found a new function as the communication path­
way between the processors. A Multi-Access Spool complex consists of from
two to seven processors (members), each running asynchronously but coop­
erating. In a JES2 Multi-Access Spool complex all the processors share
access to the same set of job and SYSOUT queues. A job can be read in by
any processor, can execute on any processor, its SYSOUT can be printed or
punched by each of the processors, and operators can control jobs anywhere
in the complex. Each processor in a Multi-Access Spool complex maintains
an in-storage copy of these job and SYSOUT queues. All processors in JES2
Mul ti -Access Spool are therefore equal in control and in process ing
responsibility; in such 'peer-coupled' systems there is no master/slave
relationship.

As the main mechanism for communication between processors of a
Multi-Access Spool complex, the checkpoint data set contains much of the
information which JES2 needs in order to control its functions.

As previously alluded to, the checkpoint contains all of the job queues
and SYSOUT queues from which work is selected. Aside from these the check­
point contains several other important structures which control its own
operation and related aspects of JES2. For example, the checkpoint con­
tains a record of system values describing the overall configuration of
the Multi-Access Spool environment and specific characteristics and
information describing the current status of each member system.

The checkpoint data set also contains the information that the processors
in the Multi-Access Spool complex use to 'share' the spool space. This

. includes extent information about the spool volumes which are currently
mounted and the bit map from which spool space is allocated. In fact,
structures in the job and SYSOUT queues contain pointers through which all
data on the spool volumes is actually located.

The checkpoint also plays a role in both RJE and NJE operations. It is
used as an 'anchor' for RJE/NJE message queues and also contains a bit map
which indicates whether and to what systems remotes are attached.

JES2 Checkpoint DASD

The checkpoint data set resides on a shared DASD which is accessible to
all the processors in a Multi-Access Spool complex. By reading and writing
information from/to the checkpoint data set, a processor maintains an
up-to-date copy of the checkpoint information in its storage. \oJhen a
processor changes information in the queues, it must reflect the change to
the other processors via the checkpoint data set. 'Ownership' of the
authority to change the checkpoint information is controlled using the
RESERVE/RELEASE feature of shared DASD. RESERVE/RELEASE also ensures the
consistency of the checkpoint data by preventing concurrent updates.

1

JES2 Checkpoint Data Set and Control

Since the JES2 checkpoint is a very frequently accessed data set, the per ­
formance of its I/O is a key consideration. For example, JES2 uses EXCPVR
for the checkpoint to reduce the overhead associated with each I/O by
translating its own channel programs and by performing its own page
fixing. The actual format of the data set (after the application of the
fix for APAR 0227300) is non standard. That is, the data set is composed
of both keyed and nonkeyed records. The records containing the job and
output queues are nonkeyed; however, the first track of the data set now
contains a special keyed record which is used to control access to the
data set. The checkpoint data set is generally relatively small. Its size
is dependent on some initialization parameter values which determine the
size of the job queue and the output queue. However the maximum size of
the data set, given the sizes of job and output queue elements today, is
only one track, plus up to 102 4K records.

One might think of the JES2 checkpoint as a kind of 'shared virtual stor ­
age'. Each processor contains a copy of the same information, and this
information, which is divided into 4K pages, is read from and written to a
DASD data set based on requirements for references and changes. The JES2
checkpoint data set (SYS1.HASPCKPT) can be thought of as the JES2 special
paging data set. Software facilities similar to the hardware change bits
have been implemented to maintain up - to - date copies of the shared informa ­
tion on DASD and in all processors. The shared virtual storage analogy is
actually a very good one; in fact, most of JES2 (everything except the
checkpoint processor) deals with the mechanism in exactly this way. Other
processors within the system are never aware of the I/O operations associ­
ated with the checkpoint.

The similarity of checkpoint processing to the MVS paging mechanism is
appa r ent. The JES2 checkpoint processor contains mechanisms that delay
processes referencing checkpoint data until an up-to-date copy of the
information is available in that system's storage, analogous to the
page - fault and page - in operations. JES2 also provides a corresponding
mechanism analogous to page - out. When a change is made to a 4K checkpoint
'page', it can be flagged as changed so that it will automatically be
written out by the checkpoint processor . These flags, called control bytes
are actually part of the data set and also serve as an indication to other
processors of which pages must be read in.

Unlike the virtual storage management of the operating system, JES2 has no
hardware facilities available to 'trap' references or record changes to
the checkpoint data.

Before any JES2 routine updates an in-storage copy of a checkpoint page,
it must be sure that its processor has exclusive control of the checkpoint
and that that page is current . To do this, a JES2 routine may issue a
$QSUSE macro instruction that calls a service routine which ensures that
all JES 2 checkpoint data is locked onto that system, preventing other
processors from updating it. Since one of the other systems may currently
own the checkpoint, this may result in a $WAIT, until the owning system
releases the checkpoint. Once the $QSUSE macro is complete, the routine is
free to update any checkpoint information until it issues a JES2 $WAIT
(explicitly or implicitly, e.g., $GETBUF WAIT=YES), at which time another
$QSUSE macro is necessary to ensure ownership before updating.

Once the JES2 routine has updated some checkpoint information, it must
then inform the checkpoint processor and other systems that a change has
been made. To record changes to checkpoint pages, JES2 uses flag bits
maintained in control bytes. For each 4K record in the checkpoint data
set, there is a corresponding control byte. The $QCKPT and $#CKPT macros
are used when a change is made to a page. These macros set the correspond ­
ing control byte . Since the control bytes are also recorded on DASD and

2 The JES2 Checkpoint Mechanism

available to each processor, they may also be used during checkpoint read
operations to determine which pages have been changed and must b~ read to
maintain a current copy in storage.

The JES2 Checkpoint Cycle

An overview of JES2 checkpoint processing shows that there are four basic
stages during a checkpoint cycle. The first phase of the checkpoint cycle
begins with a RESERVE operation to ensure exclusive control of the check­
point data set. Next, us ing information from the control bytes, any
records changed by other processors are read.

In the second phase of checkpoint processing, a system is said to 'own' or
'hold' the checkpoint. It can perform processing on and make updates to
the checkpoint data . During this phase, the processor can cause intermedi­
ate versions of the checkpoint information to be written to the DASD with­
out losing its ownership.

At the completion of the hold interval, the final write of the data set is
made and a RELEASE operation is performed which enables the next processor
to start its checkpoint cycle.

The final stage is a dormant period during which a processor makes no
attempt to access the data set and thereby allows other processors time to
complete their active phases.

The length of time in each stage of the checkpoint cycle is determined by
the installation, using three initialization parameters:

&MINHOLD specifies in hundredths of a second the minimum length
of time a member of a Multi-Access Spool complex must maintain
control of the shared queues after gaining control of them.
This parameter is related to the amount of processing time a
given system may spend examining and updating the checkpoint
information. As such, it is somewhat related to the processor's
relative speed in the Multi-Access Spool complex.

&MINDORM specifies in hundredths of a second the mlnlmum time a
member of a Multi-Access Spool complex must wait after releas­
ing control of the shared queues before again attempting to gain
coptrol of them. This parameter provides a means of preventing
one member from monopolizing control of the shared queues, and
allows adequate time for the other processors to complete their
&MINHOLD intervals. Since the object is to avoid contention for
the checkpoint data set, the &MINDORMs of each processor in the
complex should be large enough to allow for the sums of the oth­
er processors' &MINHOLD values.

Finally, &MAXDORM specifies in hundredths of a second the maxi­
mum time a member of a Multi-Access Spool complex may wait
before it is required to read the checkpoint data set. When JES2
is idle, this parameter ensures that it periodically looks at
the shared queues for eligible work that another member of the
complex may have placed there and maintains a reasonably
up-to-date copy of the queues in its storage.

There are two basic modes of operating a Multi-Access Spool complex. The
most prevalent is in a controlled environment where each processor 'gets
its turn' owning the checkpoint data set. The other, contention mode, is
not recommended\ In contention mode, it is possible to allow the processor
to compete for the checkpoint at al1 times by specifying &MINDORM and
&MINHOLD equal to O.

3

Since the JES2 checkpoint data set can be accessed by several processors,
the RESERVE/RELEASE feature of shared DASD is used to control access to
it. When a particular JES2 system wishes to access the checkpoint, a
RESERVE is issued. This allows this processor to update the data set until
it issues a RELEASE. If another processor attempts to access the device on
which the checkpoint data set resides while the first processor is still
holding the RESERVE, the second processor will be returned a busy condi­
tion to its I/O operation. When the processor holding the RESERVE finally
issues the RELEASE for the DASD, an interrupt (device end) is signalled to
all processors which experienced the busy condition. At this point, the
DASD is unlocked, and the other systems can again try to reserve it.

JES2 Checkpoint I/O Operations

As shown earlier, the checkpoint cycle begins with a read operation to
update the in-storage queues. Each read operation is divided into two sep­
arate I/Os. The first issues a RESERVE for the checkpoint device and reads
control information including the control bytes from the first track. The
control bytes are then used to build a channel program to read in all of
the records which were changed by other processors.

Because performance is a primary consideration with respect to checkpoint
I/O, JES2 uses EXCPVR and manages its own real storage. The processing
that JES2 uses to read the checkpoint is depicted in this slide. In addi­
tion to the storage actually used to contain the checkpoint data, JES2
maintains a checkpoint I/O buffer. During normal checkpoint I/O, actual
CCWs transfer data to this buffer. First (step 1), using the control
bytes, JES2 'fixes' (PGFIX with the RLSE option) the real frames associ­
ated with pages in the buffer that will be used. After a channel program
has been built and executed (step 2), JES2 moves (step 4) each of the read
pages to the appropriate area of the actual checkpoint storage. However
since it will be replacing data in these pages with the MVCL, it releases
the old data (PGRLSE) in the associated frames or ASM storage slots first
(step 3). Finally it can release the frames used as an I/O buffer. This
operation (steps 3, 4, and 5) is performed in a loop, a page at a time, so
that the real frame requirement for the I/O never exceeds by more than one
the total number of pages read.

4 The JES2 Checkpoint Mechanism

CHECKPOINT
AREA

(3)
GRLSE

- - -

(4)

MVCL

I/O
AREA

- --

Figure 1. JES2 Checkpoint Read Operation

CHECKPOINT
DATASET

Once a processor has control of the checkpoint data set, it is free to
update it until its checkpoint interval expires. Each of these updates
involves writing the master record, which includes the control bytes which
indicate the changed records as well as the changed records themselves.
When the checkpoint interval ends, the processor will make its final
update to the data set and then release it.

All the write operations performed by the checkpoint processor use the
same general algorithm. The operations are in fact the reverse of the ones
used by read. First, as in read, each page of the I/O buffer that will be
used in the EXCPVR is fixed (PGFIX with the RLSE option). For each page in
the checkpoint data set that was changed, the storage in the actual check­
point area is moved to the fixed page in the I/O buffer (step 2), and real
addresses in the channel program are adjusted. Next the EXCPVR is issued
(step 3), and the changed pages are written to DASD. Finally the pages in
the I/O buffer that were fixed are released (step 4).

5

CHECKPOINT
AREA

.. (2A)
CLCL

(26)

I/O
AREA

--
t

CHECKPOINT
DATASET

(1)

~" PGFIX
,,! ,,-------/"

(3) t,
MVC L WRITE

~)
.... ,,-------/ (41

PGlaSE
(PGFREE)

--- ---

--- ---

Figure 2. JES2 Checkpoint Write Operation

In some cases in both the read and write cycles, these sequences are
slightly altered to allow special validity checking associated with the
&DEBUG Initialization option. In this case the I/O area is never actually
released, but simply page freed after read. During the write cycle, pages
whose control bytes do not indicate change are compared with the saved
copy in the I/O area to ensure that an error has not occurred (step 2a).
For example, the two copies of the page might not be identical if an
update was made without a $QCKPT or $#CKPT.

HISTORY OF THE CHECKPOINT FUNCTION

The checkpoint function has a long history and recently has undergone
several major redesigns.

The checkpoint function has existed as far back as HASP (late 1960s). In
HASP, and in early versions of JES2, the first few tracks of the spool
were formatted into special checkpoint records. This information was used
primarily for warm starting.

With MVS and JES2 Release 3, Multi-Access Spool was introduced. In
Multi -Access Spool, the checkpoint serves as the communication mechanism
between processors, and some hardware control over the updating of infor­
mation was needed. Therefore the checkpoint information was moved to a
separate MVS data set.

As installations grew, the size of their checkpoint data sets also grew
and some Multi -Access Spool installations were beginning to experience
performance problems related to the amount of time required to perform
checkpoint I/O operations. Al though JES2 would only rewrite changed
checkpoint records, it had to read the entire data set because there was
no way of determining which records had been changed by other processors.
As a result, JES2 could become essentially serialized until checkpoint I/O

6 The JES2 Checkpoint Mechanism

completed. This led to RJE timeouts and slow responses to operator com ­
mands. Also, much of the I/O fur the checkpoint data set was unnecessary,
because many of the pages in the job queue and job output table were
unchanged. Thus the records being read overlayed jdentical data already in
storage.

This performance problem was addressed with the fix to APAR OZ20010. With
this fix, control bytes which reside on the checkpoint data set itself are
used to identify which records were changed so that only those selected
records need to be read in . The physical format of the data set was
changed to consist of fixed length 4K blocks . In addition to the selective
read capability, EXCPVR was chosen as the access method in order to
improve performance even further. Also, JES2 began using the services of
MVS to manage the real storage associated with checkpoint I/O buffers.

After about a year, reports of several major unrecoverable checkpoint
failures were received. Although these failures were induced by severe
hardware conditions, it was apparent that JES2 did not provide adequate
error recovery for its checkpoint data set. Clearly the loss of a check ­
point data set could be a major problem in large Multi-Access Spool
installations and even somewhat uncomfortable for a single processor .
Since the JES2 checkpoint represents an important system resource, it
became obvious that significant (in fact, extraordinary) measures should
be taken to protect it .

The fix for APAR OZ27300 provides a variety of both simple and complex
schemes for error detection, retry, recovery, and avoidance.

In addition to taking advantage of normal MVS error recovery, JES2 retries
even those errors considered permanent by ERPs. Special error detection
mechanisms, including unusual channel programming and a philosophy of
minimal dependence on hardware error reporting, were implemented. An aux­
iliary locking mechanism to supplement the shared DASD RESERVE/RELEASE
facility was invented. Most importantly a new secondary copy of the check ­
point data set is now optionally maintained as a backup in case of media
damage or other failures. Finally, additional processing was included in
initialization to allow JES2 to repair minor structural damage to the
checkpoint and continue with minimal loss of job and SYSOUT data.

JES2 CHECKPOINT INTEGRITY

First let us examine the problem and its ramifications. The JES2 check­
point data set can be rendered unusable for a wide variety of reasons,
ranging from hardware and software errors to operational mishaps. At one
extreme, the data set can be affected by the loss of the DASD volume, due
to a 'head crash' or other phys ical damage. On the other hand, more
recently it was discovered that certain operational procedures, which are
used generally to avoid a system crash, may also at times be responsible
for allowing invalid data to be written to the checkpoint data set.

Customers with large Multi-Access Spool complexes are the ones which expe­
rience these types of failures most frequently. They are also the ones
which are most seriously affected by a complete loss of their checkpoint
data set. Regardless of size, loss of a checkpoint data set is a serious
event in any installation today.

The amount of queued work in terms of input jobs and SYSOUT lost can be
significant in both processor hours and printed lines of output. All of
the jobs in the input queues and all of the SYSOUT data queued are gone.

Another serious consequence is the interruption in service. All the sys­
tems in the complex must be re-initialized, and the JES2 checkpoint data

7

set must be reformatted by a 'cold start'. In today's installations with
large numbers of interactive users, far-reaching networks, and large num­
bers of RJE stations, the 'down-time' necessary to rc-initialize all of
the systems in the complex is a problem. Howeve~, even when the systems
are all running, the installation has to determine what work was in the
queues, re-enter the jobs which had not yet executed, and rerun the jobs
which had output queued, if possible.

Checkpoint Integrity Ph ilosophy

Because of the impact of this problem, the JES2 checkpoint integrity fix
was designed with several goals in mind. First, if possible, any inter­
ruption to service should be avoided, that is, JES2 should not fail unnec­
essarily. Second, if it is necessary to take JES2 down, only a warm start
should be required. In the best case this will allow JES2 to continue
with no loss of jobs or of SYSOUT. However even if some work must be lost,
the bulk of the job and output queues will remain intact. Third, when it
is necessary to continue operation with a slightly damaged checkpoint data
set, JES2 initialization should detect and repair errors in its structure
rather than expose the system to the possibly snowballing effects of these
errors. Fourth, in cases where both the primary and secondary checkpoint
data sets are damaged beyond use, JES2 should allow the system programmer
access to the checkpoint information recorded in a SYS1.DUMP data set, for
possible partial recovery of the larger jobs in the system and for diagno­
sis of the problem. Finally, JES2 must provide sufficient error messages
and descriptions to allow operations personnel and system programmers to
determine the nature and severity of checkpoint problems and decide on
appropriate actions.

The checkpoint integrity functions in JES2 have been implemented to pro­
vide protection from a variety of possible failures.

In addition to retrying simple transient errors, JES2 will now attempt to
detect and recover from errors heretofore considered undetectable by the
hardware.

The single most important mechanism for recovery from severe failures is
the availability of a secondary copy of the checkpoint data set.

Also, a new hardware/software locking strategy for the checkpoint data set
is used as a backup for the RESERVE/RELEASE feature. Unlike
RESERVE/RELEASE, this mechanism is unlikely to fail in a way that could
affect the integrity of the checkpoint.

Finally, it is now possible for either the issuing processor or other
processors in the Multi - Access Spool complex to detect channel programs
which are interrupted and not normally completed.

The Alternate Checkpoint Data Set

One of the most significant external changes to the JES2 system that was
effected by the checkpoint integrity changes is the definition of a new
and optional facility that allows an installation to maintain a secondary
copy of the JES2 checkpoint data set . This data set, called the
'alternate' or 'duplex', is an exact image of the primary data set that
resides on a separate DASD volume. The volume serial of the disk which
contains this data set is defined via an initialization parameter
(&CHKPT2). However, the requirement that the alternate data set not reside
on the same volume as the primary is the only special consideration given

8 The JES2 Checkpoint Mechanism

"

to it, other than its accessibility . It does not have to be on the same
device type as the primary data set .

SYSTEM SYSTEM B

Figure 3. Alternate Checkpoint Data Set

If the primary data set is damaged, an initialization option can be speci ­
fied to use the alternate data set to 'warm start' the system . If the pri ­
mary DASD volume has been damaged beyond use, for example when a head
crash has occurred, the alternate checkpoint can even be used as a
replacement for the primary.

In situations where the physical DASD on which the primary data set
resides has not been damaged, it might be possible to restart the system
with both checkpoint data sets in the configuration and using the alter ­
nate as the source of the checkpoint data. The "ALTCKPT" initialization
option allows the installation to warm start from the duplex checkpoint.
In this case, the checkpoint information will be read from the alternate
and used to refresh the primary. After initialization is complete, both
the primary and alternate checkpoint data sets will be used in their ori ­
ginal roles. Because the primary checkpoint data set is rewritten, the
use of this initialization option is allowed only during a complex -wide
warm start .

The alternate data set can be used in either a Multi-Access Spool complex
or in non-loosely coupled environments. It is not necessary for each
processor in the complex to have access to the duplex data set . Some
installations may want to configure so that only some of the processors,
perhaps only one, will perform the checkpoint duplexing function.
However, it is recommended that no fewer than two duplex.

There are certain characteristics of the I/O for the alternate data set
which are of interest. JES2 always checks to see that I/O to the primary
data set has completed before initiating the channel program for the
duplex. This ensures that at least one of the data sets will be valid
should an incident, such as a power failure, occur during an update opera­
tion. As mentioned earlier, if the primary checkpoint is damaged, the
alternate can always be used to restart. When this is done, the checkpoint
data is read in from the duplex. This is the only place where the alter­
nate checkpoint is read. During normal operation it is only written. Since
writes to the alternate data set are always synchronized with I/O to the
primary, the locking mechanism for the primary can also be used to safe ­
guard the data in the duplex. This means that the RESERVE (and lock) which
is used for the - I/O to the primary checkpoint is used to guarantee that no
other processor is updating the alternate data set. For this reason, it is
important that no other data sets which might be shared between the sys-

9

tems be placed on the same volume as the alternate data set. An interlock
can result if this is done. For example, system B reserves a load module
librdry on volume CKPT2 (the alternate checkpoint volume) while system A
owns the RESERVE (and lock) on the primaiY checkpoint volume CKPTI. Sys­
tem B then tries unsuccessfully to reserve the primary checkpoint volume
CKPTI while processing in a JES2 subsystem interface (HASPSSSM) service
routine for the same task that issued the RESERVE for CKPT2. A system
deadlock will occur. System A holds the primary RESERVE and will not
release it until it has successfully written the alternate, which it is
unable to do due to system B's outstanding RESERVE. System B, on the other
hand, will not release its RESERVE on the secondary checkpoint volume
until it exits the JES2 service routine, after acquiring the primary
RESERVE.

Because the alternate is the main source of recovery data in the event of
a failure, JES2 uses all of the extended error detection and recovery
facilities which are available with this fix for both the primary and
alternate checkpoint data sets.

Because the alternate checkpoint data set provides the only backup for the
checkpoint data, there are some recommendations for its placement. The
system will ensure that the primary and alternate data sets are on sepa­
rate volumes. Second, if it is possible, these data sets should have sepa­
rate DASD control units, separate power sources, and separate channels or
I/O directors. A further step in ensuring the validity of the checkpoint
data is to physically isolate the DASD units, so that environmental haz ­
ards, such as fire, flood, or physical impact, cannot damage both devices.

Chec kpoint Data Set Format

In order to implement several of the schemes associated with extended I/O
error recovery and the new data set lock, the format of the checkpoint
data set has changed. There are two additional records on the first track.

The first track of the checkpoint data set and the channel programs asso­
ciated with it have been designed to assure that any DASD device type can
be used for either the primary or the alternate data set and to minimize
the associated rotational delay. Slightly more than one revolution is
required in order to execute the channel program which performs the ini­
tial read of the records on the first track when a checkpoint cycle
begins.

As mentioned earlier, the checkpoint data set is now a non standard data
set, containing both keyed and nonkeyed records.

The first track now contains three control records: an 8-byte check
record, a lock record composed of an 8-byte key field and an 8-byte data
field, and the master record. The job queues and output queues are seg­
mented into 4K records which reside on the remainder of the data set.
There is a possibility that some portion of the last 4K record in the job
queue and in the job output table may not be used, since the sizes of
checkpoint structures are rounded to fit into 4K boundaries. The format of
the duplex checkpoint data set, if one exists, is identical to the
primary.

10 The JES2 Checkpoint Mechanism

Rl R2 R3

TRACK llCHKI L09K MASTEl?

KEY DATA

TRACK 21

TRACK 31

TRACK 41
4K RECORDS

TRACK 51

TRACK 01

• • •
• • •

TRACK NI

Figure 4. Checkpoint Data Set Format

The check record is an 8-byte record at the beginning of the first track
of the checkpoint data set. It contains a check value used to help deter­
mine whether the remainder of the data in the checkpoint is valid. That
is, it will be used in conjunction with a companion value in another
record to indicate whether the previous update operation completed suc­
cess fully.

The second record on the first track is the lock record, the only keyed
record in the checkpoint data set. It consists of an 8-byte key portion
and an 8-byte data portion which are identical. It is used as a software
lock in addition to the normal hardware RESERVE/RELEASE mechanism.

11

CHECK
RECORD LOCK RECORD

1 1// 1 1//
X '20' H1 68 // X ' 20 ' H168//

1 1// 1 1//

Figure 5. Track 1 - Check and Lock Records

The JES2 master record is the third record on the first track of the
checkpoint data set. It contains information from selected variables of
the JES2 HCT. Among these values are the initialization parameters which
a ffect the configuration of the Multi - Access Spool complex ($SAVEBEG);
the QSE data areas that represent t he status of each processor in the com ­
plex; the checkpoint control bytes ($CTLB); a series of bytes that
describe the extents of currently mounted spool volumes ($DACKPT); an RJE
sign- on control table ($RMTSON); the RJE/NJE message queues ($MSPOOLQ);
and the master Spool track allocation bit map ($TGMAP). Importantly, among
the variables in the first part of the record ($SAVEBEG) is the copy of
the check value which is compared to the value in the check record during
read operations to determine whether the records in the checkpoint data
set are all at the same update level. This will be elaborated on later.

12 The JES2 Checkpoint Mechanism

MASTER RECORD

HCT
CHECKPOINTED

AREA

CHECKPOINT REMOTE
CONTROL SIGNON

BYTES MAP
MASTER TfiACK

GROUP MAP

" QSE'S D/A REMOTE /
~ CHECK- ~IESSAGE /
~ POINT QUEUE /

"~ //I~I
"~"

o rn .-(--------,
c:==J c:==J c:==J
c:==J c:==J c:==J
c:==J c:==J
c:==J c:==J [===:J

c:==J c:==J [===:J

c:==J

Figure 6, Track 1 - Master Record

Checkpoint Data Set Lock

The checkpoint data set lock is used as a backup for the RESERVE/RELEASE
feature of shared DASD, RESERVE/RELEASE, by itself, is not an adequate
mechanism to guarantee that simultaneous updates will not occur, because
it has a tendency to open the lock, unintentionally, when failures occur,
The checkpoint data set lock provided by JES2, on the other hand, tends to
lock closed under these conditions, It will always ensure that the data in
the checkpoint data set is good by prohibiting simultaneous updates under
any circumstances. Because of this characteristic of locking closed when a
failure occurs, this lock requires a manual operation to reset it.

When a processor gets control of the shared checkpoint, it will write a
system-dependent value into the key and data portions of the lock record.
When the lock is not held by any processor, a value of zero will be
recorded. Processors in the Multi-Access Spool complex can determine
whether the shared data set is available by using a SEARCH KEY EQUAL chan­
nel command with a zero data field. If the SEARCH KEY EQUAL operation is
successful, the remainder of the channel program will set the key field to
the appropriate value for the processor. This channel program is basically
a 'compare-and-swap' operation on the lock record.

The operation to obtain the lock will be done as part of the initial read
channel program which is executed as each processor's checkpoint interval
begins. For the lock to function correctly in all circumstances, it is
imperative that the initial operation that compares the lock value (SEARCH
KEY EQUAL) not be separated from the operation of writing the lock, For
this reason these two operations are a part of a single channel program.
If an error occurs during this initial read channel program, MVS error
recovery cannot -be allowed to function, since it might attempt to restart
the channel program at a failing CCW in the middle.

13

F A I L

C C L.J

CCW
CCW
CCW

CCW
C C L.J
CCW

CCW

CCW
CCW
CCW

SRCH+ID+EO.LOCK.CC.5
TIC.)(-8.D.D

SRCH+KEY+EO.ZERO.CC.8
TIC.FAIL.D.D

SRCH+ID+EO.LOCK.CC.5
TIC.)(- 8.0.0
WRITE+KEY+DATA.SYSID.CC.16

Nap • D • 0 • 0

SRCH+ID+EO.LOCK.CC.5
TIC.)(- 8.0.D

READ+KEY+DATA.AREA.CC.16

Figure 7. Initial Read Channel Program

This is a representation of the initial read channel program. It is not a
complete picture of all the CCWs, but is meant to illustrate the lock read
and set operation. It begins by locating the lock record, which is the
second record on the first track of the checkpoint. It then uses
SEARCH - KEY - EQUAL to ensure that the lock is currently unowned. If the key
of the lock record is currently zero, it then goes on to read the master
record (record 3) and the check record (record 1). Finally it sets the
lock by writing its system ID into the key and data of the lock record.
This channel program normally ends at the NOP.

If the SEARCH - KEY - EQUAL operation fails because the lock record is cur­
rently non - zero, the channel program continues at the label FAIL which
reads the value of the lock record in order to determine which processor
owns the checkpoint lock.

When this situation occurs, JES2 will attempt its own error recovery: a
warning message will be issued to the operator, and the operation will be
periodically retried. If the system which lost the RESERVE is still run­
ning, it will eventually clear the key value, allowing the looping systems
to proceed. If it is not running, a JES2 operator command will be used by
one of the other systems to reset the lock value, on behalf of the failed
member. Thus this lock can be used as a backup for the RESERVE/RELEASE
hardware mechanism, since it tends to lock 'closed', rather than 'open',
when hardware or software failures occur.

14 The JES2 Checkpoint Mechanism

Extraordinary Error Detection and Recovery

Another type of recovery which has been implemented in chis fix is recov­
ery from all kinds of extraordinary errors. These can be characterized as
errors which are not detectable with normal procedures. They are frequent­
ly caused by external events or actions. While these events are rare, they
do occur. Among the sources are such events as power failures, hardware
errors, and damage to the checkpoint media. Also, operator or maintenance
controls such as the system-reset key or the channel-reset key have also
been known to damage the checkpoint data set.

These types of external events can occur at any time. They can interrupt
channel programs at unfortunate times. This may lead to checkpoint data
sets in which some records have been updated and others have not, causing
queues or other checkpoint structures to be scrambled or inconsistent. It
is even possible for a single CCW, like a WRITE, to be interrupted in the
middle of data transfer. This results in the remainder of the record being
zeroed out.

With these changes it is now possible for JES2 to detect and recover from
many of these extraordinary errors. Standard MVS error recovery proce­
dures are invoked to retry temporary I/O errors, except when the error
occurs in the initial lock/read channel program. When the extraordinary
error does not involve a processor failure (red light), it is now possible
for the processor initiating the checkpoint I/O to detect the failure and
attempt recovery. When the error disables the processor which has initi­
ated the I/O, it is now possible for another processor in the complex to
detect the failure. Because these errors involve incomplete channel pro­
grams and data transfer, in cases when the processor initiating the I/O is
disabled, the primary data set probably was destroyed, and recovery
involves using the alternate checkpoint, if it is present. If no secondary
checkpoint data set is available and the primary data set is known to be
damaged, then the copy (downlevel) of the checkpoint data that is present
in the detecting processor is written to the primary data set for use dur­
ing a warm start.

In certain cases where multiple failures occur and no dup1exing protection
is operational, JES2 may not be able to provide a method of recovery.

Temporary errors are retried using standard MVS error recovery procedures
in most cases. When errors are considered permanent by the ERPS, they
will still be retried by JES2 a limited number of times. MVS ERPs can be
invoked by JES2 for all checkpoint I/O except that involving the initial
lock/read channel program. Since MVS ERPs attempt to restart channel pro­
grams with the failing CCW, they cannot be used for the channel program
performing the locking operation since this could invalidate the lock.

The first step in trying to detect interrupted channel programs is to
ensure that any I/O initiated by this processor completes. In order to
determine whether our own channel programs have completed normally, each
one terminates with a special verification operation. This consists of a
READ COUNT CCW which reads a known count field of some record into an area
of storage which has been initialized to all binary ones (X'FF'). Since
all binary ones is not a legal record ID (count field), JES2 can now
detect whether its checkpoint channel programs have completed by examin­
ing the content of this storage area. When incomplete channel programs are
detected in this way, they are always restarted from the beginning.

lS

MAIN .
STOR AGE

/ -- - ,
CHEC KPOINT DATA S ET
~ /

Figure 8. I/O Completion Verification

With these changes, JES2 will now also be able to detect when the check ­
point data read at the beginning of the checkpoint cycle is invalid. If
another processor in the complex has gone down in the middle of a check ­
point update, the data on the primary checkpoint data set may have been
partially updated and is therefore not valid. It is now possible to
detect that this has occurred by using the check value in the first record
of the checkpoint data set. Every time data is written to the checkpoint,
an incremented counter (which ranges from 1 to 127) will be recorded in
both the master checkpoint record and this check record. All checkpoint
wr ite operations will write the master record (with the stored value)
first. Then, after all the changed queue records have been written, the
check record will be written as the last write operation (just before the
I/O completion verification). When a processor completes a read for the
checkpoint information, it can compare these two values to determine the
integrity of the checkpoint data. If the values are not equal (normally
they would differ by one), then one of the other processors in the complex
has failed during a checkpoint write operation and error recovery action
is necessary, and always involves a warm start.

16 The JES2 Checkpoint Mechanism

·t·

,!

(

MAIN
STORAGE
-

6 --------------, -
-
-
-

-
-

Figure 9. Checkpoint Data Integrity Verification

When JES2 is writing the checkpoint data set, either during normal oper­
ations or during error recovery, and a permanent error is detected, JES2
can be fairly certain that the copy of the checkpoint data it was writing
is now destroyed. In these cases JES2 can reformat the data set during
normal system operation using format-write CCWs. There are two situations
under which this can occur: detection of an error during a write
operation, and when the primary data set becomes unreadable and no duplex
data set has been defined. In this case, we cannot assume that another
processor can read the data set and it must therefore be completely
rewritten, or there is a chance of losing the only checkpoint data set
which exists. In both of these cases, the damaged data set is completely
rewritten, using format-write CCWs to ensure that track condition errors
like missing address markers or format errors created by interrupted chan­
nel programs are eliminated.

JES2 I nitialization Checkpoint Data Area Analysis

In some cases, even after our best efforts to recover, the JES2 checkpoint
may contain errors that are introduced either by unrecovered failures or
software errors that may be too subtle to detect. In these examples, new
processing in JES2 initialization will be called into play. This process­
ing ,attempts, dl:lring complex-wide restarts, to analyze and correct errors
in both the job and output queues.

17

The job queue and the job output table are scanned using their sequential
organization (not dependent on chains), and the status of each element is
determined. Chains poiGting fr8m one element to another within the struc­
tural organization of the queues are validity checked, and all elements
are accounted for. If errors do exist, they are reported to the operator.
In some cases erroneous chains and counters can be replaced or recon­
structed, but in other cases the associated jobs or SYSOUT data sets will
be purged from the queues. In the case of the job queue, the operator will
be allowed to determine whether restart should continue if errors are
found; but the analysis of the job output table will be performed and
errors will be repaired without operator intervention. When this analysis
is depended on, it is probably wise to make copies of the primary (or
alternate) checkpoint data set prior to restarting JES2. This allows the
diagnos is of the problem by examining the anomalies present in the
unchanged checkpoint data set.

Diagnostic and Operat ion al Considerations

As stated at the outset, a primary goal in making these changes was to
permit simpler diagnosis of checkpoint problems that do occur. To this
end, the JES2 checkpoint integrity software has eliminated the confusing
combinations of catastrophic error messages and unexplained terminations
that used to occur , and has replaced them with a set of error terminations
(Kxx CATASTROPHIC ERRORS) that are unique to each error scenario. Each Kxx
termination code has documentation (in the System Message Library) that
describes the nature of the error situation; the specific effects of the
failure, such as which of the checkpoint data sets is likely to be
damaged; the actions the system has already taken and what the results of
these actions were; and the actions that are appropriate as
operator/system programmer responses to the failure. Also in all error
scenarios a dump of the checkpoint data can be printed from the SYS1 . DUMP
data set that JES2 wrote at the time the error was detected.

In conjunction with the enhanced recovery options that these software
changes provide, there two new operational characteristics of interest .
First, the operator is now provided with an initialization option
'ALTCKPT', that will cause JES2 to read the alternate checkpoint data set
as the source of checkpoint information during initialization. Secondly,
an additional operand of the $ESYS command is provided to allow the opera­
tor of a processor to manually release the checkpoint lock that had been
set by another processor that failed.

Also, a new initialization statement is available to specify the volume
serial on which the alternate checkpoint data set is located .

Although these facilities are made available as operator functions and
also provide significant internal safeguards against their misuse, it is
recommended that operators be fully trained in how to respond to check­
point failure situations.

The key to complete understanding of the new checkpoint integrity mech ­
anism and correct responses during critical periods after a checkpoint
failure is EDUCATION! Installations should establish procedures which
must be carried out faithfully in these situations, based on the recommen­
dations in the System Programming Library documentation for JES2. During
the initial testing of these changes and subsequent early user experiences
with these scenarios, operator and system programmer procedural errors
were common causes of checkpoint loss. We recommend that operators be
assisted by system programmers (at least initially) when confronted with
these potential failure events. Operators must be impressed with the grav­
ity of these situations and must not attempt recovery actions for which
the consequences are not known to them. Misuse of system control and main-

18 The JES2 Checkpoint Mechanism

tenance keys like SYSTEM RESET or PS\V RESTART should be discouraged . Above
all, the checkpoint data sets of JES2 should be treated as critical system
resources, and decisions involving their .future should not be made by a
single individual.

19

THIS PAGE INTENTIONALLY LEFT BLANK

20 The JES2 Checkpoint Mechanism

READER'S COMMENT FORM

Title: The JES2 Checkpoint Mechanism
Washington Systems Center
Technical Bulletin GG22-9220-00

You may use this form to communicate your comments about this publication,
its organization, or subject matter, with the understanding that IBM may
use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Please state your occupation:

Comments:

Please mail to: J.M.Hutchinson
IBM Washington System Center
18100 Frederick Pike
Gaithersburg, MD 20760

READER'S COMMENT FORM

Title: The JES2 Checkpoint Mechanism
Washington Systems Center
Technical Bulletin GG22-9220-00

You may use this form to communicate your comments about this publication,
its organization, or subject matter, with the understanding that IBM may
use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Please state your occupation:

Comments:

Please mail to: J.M.Hutchinson
IBM Washington System Center
18100 Frederick Pike
Gaithersburg, MD 20760

r

, \

(

) ~ , , ~
- \.' "

(

GG22- 9220- 00

==-= .= {! - - -------. -~-- - - ----------
-~- . -

International Business Machines Corporation
Data Processing Division
"33 Westchester Avenue. White Plains. N .Y. '0604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant. Route 9. North Tarrytown. N .Y .. U .S.A . 10591

IBM World Trade Europe/Middle Ealt/ Africa Corporation
360 Hamilton Avenue. White Plains. N .Y .. U .S.A . 10601

--I
::r
CD

'­m
(J')
N

()
::r
CD
C'l
7'
'0
2.
::l ,...

:s:::
CD
C'l
::r
III
::l
in'
3

"'0
::! .
::l ,...
CD
Q.

C
c;)

i.>

Cl
Cl
~)
N
I
to
N
N
o

o
o

